Cypress CY7C1316CV18 User Manual

CY7C1316CV18, CY7C1916CV18  
CY7C1318CV18, CY7C1320CV18  
18-Mbit DDR-II SRAM 2-Word  
Burst Architecture  
Features  
Functional Description  
18-Mbit density (2M x 8, 2M x 9, 1M x 18, 512K x 36)  
267 MHz clock for high bandwidth  
The CY7C1316CV18, CY7C1916CV18, CY7C1318CV18, and  
CY7C1320CV18 are 1.8V Synchronous Pipelined SRAMs  
equipped with DDR-II architecture. The DDR-II consists of an  
SRAM core with advanced synchronous peripheral circuitry and  
a one-bit burst counter. Addresses for read and write are latched  
on alternate rising edges of the input (K) clock. Write data is  
registered on the rising edges of both K and K. Read data is  
driven on the rising edges of C and C if provided, or on the rising  
edge of K and K if C/C are not provided. Each address location  
is associated with two 8-bit words in the case of CY7C1316CV18  
and two 9-bit words in the case of CY7C1916CV18 that burst  
sequentially into or out of the device. The burst counter always  
starts with a ‘0’ internally in the case of CY7C1316CV18 and  
CY7C1916CV18. For CY7C1318CV18 and CY7C1320CV18,  
the burst counter takes in the least significant bit of the external  
address and bursts two 18-bit words (in the case of  
CY7C1318CV18) of two 36-bit words (in the case of  
CY7C1320CV18) sequentially into or out of the device.  
2-word burst for reducing address bus frequency  
Double Data Rate (DDR) interfaces  
(data transferred at 534 MHz) at 267 MHz  
Two input clocks (K and K) for precise DDR timing  
SRAM uses rising edges only  
Two input clocks for output data (C and C) to minimize clock  
skew and flight time mismatches  
Echo clocks (CQ and CQ) simplify data capture in high-speed  
systems  
Synchronous internally self-timed writes  
DDR-II operates with 1.5 cycle read latency when the DLL is  
enabled  
Asynchronous inputs include an output impedance matching  
input (ZQ). Synchronous data outputs (Q, sharing the same  
physical pins as the data inputs, D) are tightly matched to the two  
output echo clocks CQ/CQ, eliminating the need to capture data  
separately from each individual DDR SRAM in the system  
design. Output data clocks (C/C) enable maximum system  
clocking and data synchronization flexibility.  
Operates similar to a DDR-I device with 1 cycle read latency in  
DLL off mode  
1.8V core power supply with HSTL inputs and outputs  
Variable drive HSTL output buffers  
Expanded HSTL output voltage (1.4V–V  
)
DD  
All synchronous inputs pass through input registers controlled by  
the K or K input clocks. All data outputs pass through output  
registers controlled by the C or C (or K or K in a single clock  
domain) input clocks. Writes are conducted with on-chip  
synchronous self-timed write circuitry.  
Available in 165-Ball FBGA package (13 x 15 x 1.4 mm)  
Offered in both Pb-free and non Pb-free packages  
JTAG 1149.1 compatible test access port  
Delay Lock Loop (DLL) for accurate data placement  
Configurations  
CY7C1316CV18 – 2M x 8  
CY7C1916CV18 – 2M x 9  
CY7C1318CV18 – 1M x 18  
CY7C1320CV18 – 512K x 36  
Selection Guide  
Description  
267 MHz  
267  
250 MHz  
250  
200 MHz  
200  
167 MHz  
167  
Unit  
MHz  
mA  
Maximum Operating Frequency  
Maximum Operating Current  
x8  
x9  
775  
705  
575  
490  
780  
710  
580  
490  
x18  
x36  
805  
730  
600  
510  
855  
775  
635  
540  
Cypress Semiconductor Corporation  
Document Number: 001-07160 Rev. *E  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised June 18, 2008  
CY7C1316CV18, CY7C1916CV18  
CY7C1318CV18, CY7C1320CV18  
Logic Block Diagram (CY7C1318CV18)  
Burst  
Logic  
A0  
Write  
Reg  
Write  
Reg  
20 19  
A
A
(19:0)  
Address  
Register  
(19:1)  
18  
LD  
K
K
Output  
R/W  
CLK  
Logic  
Gen.  
Control  
C
C
DOFF  
Read Data Reg.  
36  
18  
CQ  
CQ  
V
REF  
18  
18  
Reg.  
Reg.  
Reg.  
Control  
Logic  
R/W  
18  
18  
BWS  
DQ  
[1:0]  
[17:0]  
Logic Block Diagram (CY7C1320CV18)  
Burst  
Logic  
A0  
Write  
Reg  
Write  
Reg  
19 18  
A
A
(18:0)  
Address  
Register  
(18:1)  
36  
LD  
K
K
Output  
Logic  
Control  
CLK  
R/W  
Gen.  
C
C
DOFF  
Read Data Reg.  
72  
36  
CQ  
CQ  
V
REF  
36  
36  
Reg.  
Reg.  
Reg.  
Control  
Logic  
R/W  
36  
36  
BWS  
DQ  
[3:0]  
[35:0]  
Document Number: 001-07160 Rev. *E  
Page 3 of 29  
CY7C1316CV18, CY7C1916CV18  
CY7C1318CV18, CY7C1320CV18  
Pin Configuration  
The pin configuration for CY7C1316CV18, CY7C1916CV18, CY7C1318CV18, and CY7C1320CV18 follow.  
165-Ball FBGA (13 x 15 x 1.4 mm) Pinout  
CY7C1316CV18 (2M x 8)  
1
CQ  
NC  
NC  
NC  
NC  
NC  
NC  
DOFF  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
2
NC/72M  
NC  
3
4
R/W  
A
5
6
K
K
A
7
8
LD  
A
9
10  
NC/36M  
NC  
11  
CQ  
DQ3  
NC  
NC  
DQ2  
NC  
NC  
ZQ  
A
B
C
D
E
F
A
NWS  
NC/144M  
A
1
NC  
NC  
NC  
DQ4  
NC  
DQ5  
NC/288M  
A
NWS  
A
NC  
NC  
NC  
NC  
NC  
NC  
0
NC  
V
V
V
NC  
SS  
SS  
SS  
SS  
NC  
V
V
V
V
V
V
NC  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
NC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
NC  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
NC  
V
V
V
V
V
V
V
V
V
V
NC  
G
H
J
NC  
NC  
V
V
V
V
REF  
REF  
DDQ  
DDQ  
NC  
NC  
NC  
NC  
DQ1  
NC  
NC  
NC  
DQ0  
NC  
NC  
NC  
TDI  
K
L
NC  
NC  
NC  
NC  
DQ7  
A
NC  
NC  
NC  
NC  
NC  
A
DQ6  
NC  
V
V
V
V
NC  
SS  
SS  
SS  
SS  
M
N
P
R
V
V
NC  
SS  
SS  
SS  
NC  
V
A
A
A
A
C
C
A
A
A
V
NC  
SS  
NC  
A
A
A
A
NC  
TCK  
TMS  
CY7C1916CV18 (2M x 9)  
1
CQ  
NC  
NC  
NC  
NC  
NC  
NC  
DOFF  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
2
NC/72M  
NC  
3
4
5
NC  
6
K
K
A
7
8
9
10  
NC/36M  
NC  
11  
CQ  
DQ3  
NC  
A
B
C
D
E
F
A
R/W  
A
NC/144M  
LD  
A
A
NC  
NC  
NC  
DQ4  
NC  
DQ5  
NC/288M  
A
BWS  
A
NC  
NC  
NC  
NC  
NC  
NC  
0
NC  
V
V
V
NC  
SS  
SS  
SS  
SS  
NC  
V
V
V
V
V
V
NC  
NC  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
NC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
NC  
DQ2  
NC  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
NC  
V
V
V
V
V
V
V
V
V
V
NC  
G
H
J
NC  
NC  
NC  
V
V
V
V
REF  
ZQ  
REF  
DDQ  
DDQ  
NC  
NC  
NC  
NC  
DQ1  
NC  
NC  
K
L
NC  
NC  
NC  
NC  
DQ7  
A
NC  
NC  
NC  
NC  
NC  
A
NC  
DQ6  
NC  
V
V
NC  
DQ0  
NC  
SS  
SS  
SS  
SS  
M
N
P
R
V
V
V
V
NC  
SS  
SS  
SS  
NC  
V
A
A
A
A
C
C
A
A
A
V
NC  
NC  
SS  
NC  
A
A
A
A
NC  
DQ8  
TDI  
TCK  
TMS  
Note  
1. NC/36M, NC/72M, NC/144M, and NC/288M are not connected to the die and can be tied to any voltage level.  
Document Number: 001-07160 Rev. *E  
Page 4 of 29  
 
CY7C1316CV18, CY7C1916CV18  
CY7C1318CV18, CY7C1320CV18  
Pin Configuration (continued)  
[1]  
The pin configuration for CY7C1316CV18, CY7C1916CV18, CY7C1318CV18, and CY7C1320CV18 follow.  
165-Ball FBGA (13 x 15 x 1.4 mm) Pinout  
CY7C1318CV18 (1M x 18)  
1
CQ  
NC  
NC  
NC  
NC  
NC  
NC  
DOFF  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
2
NC/72M  
DQ9  
NC  
3
4
R/W  
A
5
6
K
7
8
LD  
A
9
10  
NC/36M  
NC  
11  
CQ  
A
B
C
D
E
F
A
BWS  
NC/144M  
A
1
NC  
NC/288M  
A
K
BWS  
A
NC  
NC  
NC  
NC  
NC  
NC  
DQ8  
NC  
0
NC  
V
V
A0  
V
DQ7  
NC  
SS  
SS  
SS  
SS  
NC  
DQ10  
DQ11  
NC  
V
V
V
V
V
V
NC  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
NC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
NC  
DQ6  
DQ5  
NC  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DQ12  
NC  
V
V
V
V
V
V
V
V
V
V
NC  
G
H
J
DQ13  
NC  
V
V
V
V
REF  
ZQ  
REF  
DDQ  
DDQ  
NC  
NC  
NC  
DQ14  
NC  
NC  
DQ4  
NC  
NC  
K
L
NC  
NC  
NC  
NC  
NC  
A
DQ3  
DQ2  
NC  
DQ15  
NC  
V
V
V
V
NC  
SS  
SS  
SS  
SS  
M
N
P
R
NC  
V
V
DQ1  
NC  
SS  
SS  
SS  
NC  
DQ16  
DQ17  
A
V
A
A
A
A
C
C
A
A
A
V
NC  
SS  
NC  
A
A
A
A
NC  
DQ0  
TDI  
TCK  
TMS  
CY7C1320CV18 (512K x 36)  
1
CQ  
NC  
NC  
NC  
NC  
NC  
NC  
DOFF  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
2
3
4
5
BWS  
BWS  
A
6
K
7
BWS  
BWS  
A
8
9
10  
NC/72M  
NC  
11  
A
B
C
D
E
F
NC/144M NC/36M  
R/W  
A
LD  
A
A
CQ  
2
3
1
0
DQ27  
NC  
DQ18  
DQ28  
DQ19  
DQ20  
DQ21  
DQ22  
K
NC  
NC  
NC  
NC  
NC  
NC  
DQ8  
DQ7  
DQ16  
DQ6  
DQ5  
DQ14  
ZQ  
V
V
A0  
V
DQ17  
NC  
SS  
SS  
SS  
SS  
DQ29  
NC  
V
V
V
V
V
V
SS  
SS  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DQ15  
NC  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DQ30  
DQ31  
V
V
V
V
V
V
V
V
V
V
G
H
J
NC  
V
V
V
V
REF  
REF  
DDQ  
DDQ  
NC  
NC  
DQ32  
DQ23  
DQ24  
DQ34  
DQ25  
DQ26  
A
NC  
DQ13  
DQ12  
NC  
DQ4  
DQ3  
DQ2  
DQ1  
DQ10  
DQ0  
TDI  
K
L
NC  
NC  
NC  
NC  
NC  
A
DQ33  
NC  
V
V
SS  
SS  
SS  
SS  
M
N
P
R
V
V
V
V
DQ11  
NC  
SS  
SS  
SS  
DQ35  
NC  
V
A
A
A
A
C
C
A
A
A
V
SS  
A
A
A
A
DQ9  
TMS  
TCK  
Document Number: 001-07160 Rev. *E  
Page 5 of 29  
CY7C1316CV18, CY7C1916CV18  
CY7C1318CV18, CY7C1320CV18  
Pin Definitions  
Pin Name  
DQ  
IO  
Pin Description  
Input Output- Data Input Output Signals. Inputs are sampled on the rising edge of K and K clocks during valid write  
Synchronous operations. These pins drive out the requested data during a read operation. Valid data is driven out on  
the rising edge of both the C and C clocks during read operations or K and K when in single clock mode.  
[x:0]  
When read access is deselected, Q  
are automatically tri-stated.  
[x:0]  
CY7C1316CV18 DQ  
[7:0]  
CY7C1916CV18 DQ  
[8:0]  
CY7C1318CV18 DQ  
CY7C1320CV18 DQ  
[17:0]  
[35:0]  
LD  
NWS ,  
Input-  
Synchronous Load. This input is brought LOW when a bus cycle sequence is defined. This definition  
Synchronous includes address and read/write direction. All transactions operate on a burst of 2 data.  
Input-  
Nibble Write Select 0, 1 Active LOW (CY7C1316CV18 only). Sampled on the rising edge of the K  
0
NWS  
Synchronous and K clocks during write operations. Used to select which nibble is written into the device during the  
current portion of the write operations. Nibbles not written remain unaltered.  
1
NWS controls D  
and NWS controls D  
.
0
[3:0]  
1
[7:4]  
All the Nibble Write Selects are sampled on the same edge as the data. Deselecting a Nibble Write Select  
ignores the corresponding nibble of data and it is not written into the device.  
BWS ,  
Input-  
Byte Write Select 0, 1, 2, and 3 Active LOW. Sampled on the rising edge of the K and K clocks during  
0
BWS ,  
Synchronous write operations. Used to select which byte is written into the device during the current portion of the Write  
operations. Bytes not written remain unaltered.  
1
BWS ,  
2
BWS  
CY7C1916CV18 BWS controls D  
3
0
[8:0]  
[8:0]  
CY7C1318CV18 BWS controls D  
and BWS controls D  
[17:9].  
0
1
CY7C1320CV18 BWS controls D  
[35:27]  
, BWS controls D  
, BWS controls D  
and BWS controls  
0
[8:0]  
1
[17:9]  
2
[26:18]  
3
D
.
All the Byte Write Selects are sampled on the same edge as the data. Deselecting a Byte Write Select  
ignores the corresponding byte of data and it is not written into the device.  
A, A0  
Input-  
Address Inputs. These address inputs are multiplexed for both read and write operations. Internally, the  
Synchronous device is organized as 2M x 8 (2 arrays each of 1M x 8) for CY7C1316CV18 and 2M x 9 (2 arrays each  
of 1M x 9) for CY7C1916CV18, 1M x 18 (2 arrays each of 512K x 18) for CY7C1318CV18, and 512K x  
36 (2 arrays each of 256K x 36) for CY7C1320CV18.  
CY7C1316CV18 – Because the least significant bit of the address internally is a ‘0’, only 20 external  
address inputs are needed to access the entire memory array.  
CY7C1916CV18 – Because the least significant bit of the address internally is a ‘0’, only 20 external  
address inputs are needed to access the entire memory array.  
CY7C1318CV18 – A0 is the input to the burst counter. These are incremented internally in a linear fashion.  
20 address inputs are needed to access the entire memory array.  
CY7C1320CV18 – A0 is the input to the burst counter. These are incremented internally in a linear fashion.  
19 address inputs are needed to access the entire memory array. All the address inputs are ignored when  
the appropriate port is deselected.  
R/W  
C
Input-  
Synchronous Read/Write Input. When LD is LOW, this input designates the access type (read when  
Synchronous R/W is HIGH, write when R/W is LOW) for the loaded address. R/W must meet the setup and hold times  
around the edge of K.  
Input Clock Positive Input Clock for Output Data. C is used in conjunction with C to clock out the read data from  
the device. C and C can be used together to deskew the flight times of various devices on the board back  
to the controller. See Application Example on page 9 for more information.  
C
Input Clock Negative Input Clock for Output Data. C is used in conjunction with C to clock out the read data from  
the device. C and C can be used together to deskew the flight times of various devices on the board back  
to the controller. See Application Example on page 9 for more information.  
K
Input Clock Positive Input Clock Input. The rising edge of K is used to capture synchronous inputs to the device  
and to drive out data through Q  
edge of K.  
when in single clock mode. All accesses are initiated on the rising  
[x:0]  
K
Input Clock Negative Input Clock Input. K is used to capture synchronous data being presented to the device and  
to drive out data through Q when in single clock mode.  
[x:0]  
Document Number: 001-07160 Rev. *E  
Page 6 of 29  
CY7C1316CV18, CY7C1916CV18  
CY7C1318CV18, CY7C1320CV18  
Pin Definitions (continued)  
Pin Name  
IO  
Pin Description  
CQ  
Output Clock CQ Referenced with Respect to C. This is a free running clock and is synchronized to the input clock  
for output data (C) of the DDR-II. In single clock mode, CQ is generated with respect to K. The timing for  
the echo clocks is shown in Switching Characteristics on page 23.  
CQ  
ZQ  
Output Clock CQ Referenced with Respect to C. This is a free running clock and is synchronized to the input clock  
for output data (C) of the DDR-II. In single clock mode, CQ is generated with respect to K. The timing for  
the echo clocks is shown in Switching Characteristics on page 23.  
Input  
Output Impedance Matching Input. This input is used to tune the device outputs to the system data bus  
impedance. CQ, CQ, and Q output impedance are set to 0.2 x RQ, where RQ is a resistor connected  
[x:0]  
between ZQ and ground. Alternatively, this pin can be connected directly to V  
, which enables the  
DDQ  
minimum impedance mode. This pin cannot be connected directly to GND or left unconnected.  
DOFF  
Input  
DLL Turn Off Active LOW. Connecting this pin to ground turns off the DLL inside the device. The timing  
in the DLL turned off operation is different from that listed in this data sheet. For normal operation, this  
pin can be connected to a pull up through a 10 KΩ or less pull up resistor. The device behaves in DDR-I  
mode when the DLL is turned off. In this mode, the device can be operated at a frequency of up to 167  
MHz with DDR-I timing.  
TDO  
Output  
Input  
Input  
Input  
N/A  
TDO for JTAG.  
TCK  
TCK Pin for JTAG.  
TDI  
TDI Pin for JTAG.  
TMS  
TMS Pin for JTAG.  
NC  
Not Connected to the Die. Can be tied to any voltage level.  
Not Connected to the Die. Can be tied to any voltage level.  
Not Connected to the Die. Can be tied to any voltage level.  
Not Connected to the Die. Can be tied to any voltage level.  
Not Connected to the Die. Can be tied to any voltage level.  
Reference Voltage Input. Static input used to set the reference level for HSTL inputs, outputs, and AC  
NC/36M  
NC/72M  
NC/144M  
NC/288M  
N/A  
N/A  
N/A  
N/A  
V
Input-  
REF  
Reference measurement points.  
V
V
V
Power Supply Power Supply Inputs to the Core of the Device.  
DD  
Ground  
Ground for the Device.  
SS  
Power Supply Power Supply Inputs for the Outputs of the Device.  
DDQ  
Document Number: 001-07160 Rev. *E  
Page 7 of 29  
CY7C1316CV18, CY7C1916CV18  
CY7C1318CV18, CY7C1320CV18  
mation presented to D  
is also stored into the write data  
are both asserted active. The 36 bits  
Functional Overview  
[17:0]  
register, provided BWS  
[1:0]  
of data are then written into the memory array at the specified  
location. Write accesses can be initiated on every rising edge of  
the positive input clock (K). This pipelines the data flow such that  
18 bits of data can be transferred into the device on every rising  
edge of the input clocks (K and K).  
The CY7C1316CV18, CY7C1916CV18, CY7C1318CV18, and  
CY7C1320CV18 are synchronous pipelined Burst SRAMs  
equipped with a DDR interface, which operates with a read  
latency of one and half cycles when DOFF pin is tied HIGH.  
When DOFF pin is set LOW or connected to V the device  
SS  
behaves in DDR-I mode with a read latency of one clock cycle.  
When Write access is deselected, the device ignores all inputs  
after the pending write operations are completed.  
Accesses are initiated on the rising edge of the positive input  
clock (K). All synchronous input timing is referenced from the  
rising edge of the input clocks (K and K) and all output timing is  
referenced to the rising edge of the output clocks (C/C, or K/K  
when in single clock mode).  
Byte Write Operations  
Byte write operations are supported by the CY7C1318CV18. A  
write operation is initiated as described in the Write Operations  
section. The bytes that are written are determined by BWS and  
All synchronous data inputs (D  
) pass through input registers  
0
[x:0]  
BWS , which are sampled with each set of 18-bit data words.  
controlled by the rising edge of the input clocks (K and K). All  
synchronous data outputs (Q ) pass through output registers  
1
Asserting the appropriate Byte Write Select input during the data  
portion of a write latches the data being presented and writes it  
into the device. Deasserting the Byte Write Select input during  
the data portion of a write enables the data stored in the device  
for that byte to remain unaltered. This feature can be used to  
simplify read/modify/write operations to a byte write operation.  
[x:0]  
controlled by the rising edge of the output clocks (C/C, or K/K  
when in single-clock mode).  
All synchronous control (R/W, LD, BWS  
input registers controlled by the rising edge of the input clock (K).  
) inputs pass through  
[0:X]  
CY7C1318CV18 is described in the following sections. The  
same basic descriptions apply to CY7C1316CV18,  
CY7C1916CV18, and CY7C1320CV18.  
Single Clock Mode  
The CY7C1318CV18 can be used with a single clock that  
controls both the input and output registers. In this mode the  
device recognizes only a single pair of input clocks (K and K) that  
control both the input and output registers. This operation is  
identical to the operation if the device had zero skew between  
the K/K and C/C clocks. All timing parameters remain the same  
in this mode. To use this mode of operation, tie C and C HIGH at  
power on. This function is a strap option and not alterable during  
device operation.  
Read Operations  
The CY7C1318CV18 is organized internally as two arrays of  
512K x 18. Accesses are completed in a burst of two sequential  
18-bit data words. Read operations are initiated by asserting  
R/W HIGH and LD LOW at the rising edge of the positive input  
clock (K). The address presented to address inputs is stored in  
the read address register and the least significant bit of the  
address is presented to the burst counter. The burst counter  
increments the address in a linear fashion. Following the next K  
clock rise, the corresponding 18-bit word of data from this  
DDR Operation  
The CY7C1318CV18 enables high-performance operation  
through high clock frequencies (achieved through pipelining) and  
double data rate mode of operation. The CY7C1318CV18  
requires a single No Operation (NOP) cycle when transitioning  
from a read to a write cycle. At higher frequencies, some appli-  
cations may require a second NOP cycle to avoid contention.  
address location is driven onto Q  
, using C as the output  
[17:0]  
timing reference. On the subsequent rising edge of C the next  
18-bit data word from the address location generated by the  
burst counter is driven onto Q  
. The requested data is valid  
[17:0]  
0.45 ns from the rising edge of the output clock (C or C, or K and  
K when in single clock mode, 200 MHz and 250 MHz device). To  
maintain the internal logic, each read access must be allowed to  
complete. Read accesses can be initiated on every rising edge  
of the positive input clock (K).  
If a read occurs after a write cycle, address and data for the write  
are stored in registers. The write information must be stored  
because the SRAM cannot perform the last word write to the  
array without conflicting with the read. The data stays in this  
register until the next write cycle occurs. On the first write cycle  
after the read(s), the stored data from the earlier write is written  
into the SRAM array. This is called a posted write.  
The CY7C1318CV18 first completes the pending read transac-  
tions, when read access is deselected. Synchronous internal  
circuitry automatically tri-states the output following the next  
rising edge of the positive output clock (C). This enables a  
seamless transition between devices without the insertion of wait  
states in a depth expanded memory.  
If a read is performed on the same address on which a write is  
performed in the previous cycle, the SRAM reads out the most  
current data. The SRAM does this by bypassing the memory  
array and reading the data from the registers.  
Write Operations  
Write operations are initiated by asserting R/W LOW and LD  
LOW at the rising edge of the positive input clock (K). The  
address presented to address inputs is stored in the write  
address register and the least significant bit of the address is  
presented to the burst counter. The burst counter increments the  
address in a linear fashion. On the following K clock rise the data  
Depth Expansion  
Depth expansion requires replicating the LD control signal for  
each bank. All other control signals can be common between  
banks as appropriate.  
Programmable Impedance  
presented to D  
is latched and stored into the 18-bit write  
[17:0]  
data register, provided BWS  
subsequent rising edge of the negative input clock (K) the infor-  
are both asserted active. On the  
An external resistor, RQ, must be connected between the ZQ pin  
[1:0]  
on the SRAM and V to enable the SRAM to adjust its output  
SS  
Document Number: 001-07160 Rev. *E  
Page 8 of 29